
The following narrative is my response to the question highlighted in blue below: 
 
What is the most inventive or innovative thing you’ve done? It doesn’t have to be something 
that’s patented. It could be a process change, product idea, a new metric or customer facing 
interface – something that was your idea. It cannot be anything your current or previous 
employer would deem confidential information. Please provide us with context to understand the 
invention/innovation. What problem were you seeking to solve? Why was it important? What 
was the result? Why or how did it make a difference and change things? 
 

As an engineering leader at Cisco, my most innovative accomplishment was the 
operationalization of the componentization program for the platform independent (PI) 
software team. For years, the PI software team had struggled to deliver software 
components in four main software release trains. The release trains had drifted apart 
over time, quality had declined, and maintenance costs were not sustainable. 
Customers who owned products that ran on different code releases were exposed to 
feature gaps, missing bug fixes, and operational inconsistencies. The goal of the 
componentization program was to roll out a single PI component source code which 
would be used in each of the four release trains to lower engineering costs and increase 
customer quality. 
 

The componentization program was a huge undertaking for the PI organization. 
Over 100 engineers were assigned to the first phase which was to deliver an initial 
group of 10 ‘hot’ components. Early in the program, I developed the PI component 
integration strategy which provided an opportunity for each component team to 
demonstrate incremental results during the long development cycle. One software 
release train, led by the MCP product team, was selected for the initial component 
integration. Based on my prior relationship with the MCP team, I worked with them to 
establish a process to integrate incremental versions of component code into their 
release train.  They did not trust the PI team’s ability to perform these operations. We 
needed to build trust if we were ever going to scale up. 

 
Despite my strong interest in the program, my initial involvement was limited. My 

team was not responsible for a ‘hot’ component, so my manager wanted to limit my time 
in the program. I largely disengaged from the program for about 15 months while 
another manager headed the daily program execution. That manager left the company 
just as the program reached the final stages of integration. My manager also moved on 
to a new role, and a new manager took his place.  My new manager assumed 
sponsorship for the program. He asked me to take over its overall execution. His 
guidance to me was simply to “make it work.” 



 
The MCP team had a high level of distrust in the PI organization. They came to 

Cisco as an acquisition and had their own separate compensation package that was 
tied to financial targets. They preferred to take their own copy of the PI code and modify 
it to suit their needs. It was difficult to convince their technical leaders that the merits of 
componentization were in their best interest. I knew the MCP team required assurance 
that the PI team was doing everything it said it would do at each stage of the release 
process. The PI team needed to establish self-policing practices to ensure that the MCP 
team’s expectations were being met, otherwise the PI team would not achieve 
operational autonomy. 

 
Since component releases were effectively small software releases, many of the 

existing software release processes needed to be translated to the component level. 
We needed quality gates, release branch plans, exception processes, and a component 
creation process. These processes would be created as needed due to time pressure. 

 
The team was nearing the first release when I re-engaged in the program.  The 

first thing I created was a per-component throttle pull gate review. I determined that we 
needed to review the following: test execution results; defect backlog; disposition of 
static analysis warnings; and defect gaps relative to prior releases.  This was the basis 
for the initial set of reviews.  I reasoned that the process could be changed if needed for 
future releases. To aid the teams in completing this process step, a template document 
was created along with step by step instructions. Automated tooling existed for 
collecting the data. The teams simply had to gather it all in one place for quick review. 
For the first release, the MCP team participated in these reviews.  

 
To counter the MCP team’s mistrust in our ability to manage a large number of 

component releases, we needed a means to document those component release plans 
for the subsequent time-based release’s execution commit gate review. One of the 
larger component teams had created an easy to understand document for their own 
use. I decided to leverage this as a template but to permit each team to provide the 
same planning information in alternate formats if it better suited their scale. I created a 
roll up spreadsheet that each team linked to their release branch plan document, as well 
as provided additional high level planning information. The roll up spreadsheet was then 
linked to the overall gate review document. 

 
As the initial phase of the program neared completion, more component teams 

were eager to jump on the componentization band wagon. With high levels of mistrust 
from the product teams, care needed to be exercised each time the program expanded. 



I created a process gate review for the creation of new components to assure that there 
was sufficient return on investment from the effort. 

 
Our release engineering team had relationships with several of the platform 

teams.  I established a weekly meeting with the lead representatives from each of the 
platform facing teams.  I worked with this team to establish a late feature exception 
process similar to the one used for standard releases.  Giving them a voice improved 
their willingness to engage in the component process definitions.  It also helped pave 
the way for integration into the other platform trains. 
 

The initial release shipped on time and with few quality or process issues 
attributed to the componentization effort.  The product team trusted our throttle pull gate 
review entirely. Component teams were subjected to lower degrees of scrutiny in 
subsequent releases.  

 
Our second componentized release train shipped nine months later.  Planning 

and execution with this product team was more straightforward due to our proven 
results.  No process changes were needed to accommodate the requirements of this 
team, however document templates and tooling automation were improved.  

 
It took two years to release components on the remaining two product trains, but 

this was in large part due to differences in their release process.  Our component 
release plans, throttle pull, and late feature exception reviews were critical items for 
acceptance from these teams.  These content-based releases lagged significantly 
behind the time-based releases, resulting in a need for much longer planning horizons. 

 
Within a year we had built enough trust with the product team that some 

component teams moved to self-management.  Two years later, all components were 
self-managed and the central component team was disbanded, greatly reducing 
overhead.  The component count grew from the initial 10 to over 60 within four years.  In 
hindsight, I could have pressed for disbanding central management of the program 
sooner.  The experienced teams had what they needed to self-manage, and sufficient 
documentation and tribal knowledge was in place to help bring others up. 

 
During the first year of program operation, the sustaining investment for the hot 

components dropped from nearly 60% to less than 30%.  Defect backlogs, which had 
been running as high as 5 times the incoming weekly bug rate for some teams, were 
held at an organizationally mandated 3 to 3.5 times the incoming weekly bug rate.  The 
investment was lower, and the quality was substantially higher. 


